Spooky action at a distance in the loss landscape
Not all global minima of the (training) loss landscape are created equal.
Even if they achieve equal performance on the training set, different solutions can perform very differently on the test set or outofdistribution. So why is it that we typically find "simple" solutions that generalize well?
In a previous post, I argued that the answer is "singularities" — minimum loss points with illdefined tangents. It's the "nastiest" singularities that have the most outsized effect on learning and generalization in the limit of large data. These act as implicit regularizers that lower the effective dimensionality of the model.
Even after writing this introduction to "singular learning theory", I still find this claim weird and counterintuitive. How is it that the local geometry of a few isolated points determines the global expected behavior over all learning machines on the loss landscape? What explains the "spooky action at a distance" of singularities in the loss landscape?
Today, I'd like to share my best efforts at the handwaving physicsy intuition behind this claim.
It boils down to this: singularities translate random motion at the bottom of loss basins into search for generalization.
Random walks on the minimumloss sets
Let's first look at the limit in which you've trained so long that we can treat the model as restricted to a set of fixed minimum loss points^{1}.
Here's the intuition pump: suppose you are a random walker living on some curve that has singularities (selfintersections, cusps, and the like). Every timestep, you take a step of a uniform length in a random available direction. Then, singularities act as a kind of "trap." If you're close to a singularity, you're more likely to take a step towards (and over) the singularity than to take a step away from the singularity.
It's not quite an attractor (we're in a stochastic setting, where you can and will still break away every so often), but it's sticky enough that the "biggest" singularity will dominate your stable distribution.
In the discrete case, this is just the wellknown phenomenon of highdegree nodes dominating most of expected behavior of your graph. In business, it's behind the reason that Google exists. In social networks, it's similar to how your average friend has more friends than you do.
To see this, consider a simple toy example: take two polygons and let them intersect at a single point. Next, let a random walker run loose on this setup. How frequently will the random walker cross each point?
Take two or more 1D lattices with toroidal boundary conditions and let them intersect at one point. In the limit of an infinite polygon/lattice, you end up with a normal crossing singularity at the origin.
If you've taken a course in graph theory, you may remember that the stable distribution weights nodes in proportion to their degrees. For two intersecting lines, the origin is twice as likely as the other points. For three intersecting lines, it's three times as likely, and so on…
The size of the circle shows how likely that point is under empirical simulation. The stationary distribution puts as many times more weight on the origin as there are intersecting lines.
Now just take the limit of infinitely large polygons/step size to zero, and we'll recover the continuous case we were originally interested in.
Brownian motion near the minimumloss set
Well, not quite. You see, restricting ourselves to motion along the minimumloss points is unrealistic. We're more interested in messy reality, where we're allowed some freedom to bounce around the bottoms of loss basins.^{2}
This time around, the key intuitionpumping assumption is to view the limiting behavior of stochastic gradient descent as a kind of Brownian motion — a source of randomness that no longer substantially improves loss but just jiggles us between solutions that are equivalent from the perspective of the training set.
To understand these dynamics, we can just study the more abstract case of Brownian motion in some continuous energy landscape with singularities.
Consider the potential function given by
This is plotted on the left side of the following figure. The right side depicts the corresponding stable distribution on the right as predicted by "regular" physics.
An energy landscape whose minimum loss set has a normal crossing singularity at the origin. Toroidal boundary conditions as in the discrete case.
Simulating Brownian motion in this well generates an empirical distribution that looks rather different from the regular prediction…
As in the discrete case, the singularity at the origin gobbles up probability mass, even at finite temperatures and even for points away from the minimum loss set.
Takeaways
To summarize, the intuition^{3} is something like this: in the limiting case, we don't expect the model to learn much from any one additional sample. Instead, the randomness in drawing the new sample acts as Brownian motion that lets the model explore the minimumloss set. Singularities are a trap for this Brownian motion which allow the model to find wellgeneralizing solutions just by moving around.
In short, singularities work because they transform random motion into useful search for generalization.
You can find the code for these simulations here and here.
Footnotes

So technically, in singular learning theory we treat the loss landscape as changing with each additional sample. Here, we're considering the case that the landscape is frozen, and new samples act as a kind of random motion along the minimumloss set. ↩

We're still treating the loss landscape as frozen but will now allow departures away from the minimum loss points. ↩

Let me emphasize: this is handwaving/qualitative/physicsy jabber. Don't take it too seriously. ↩